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Abstract
We discuss the mass of the (physical component of the) Higgs boson in one-
loop and top-quark-mass approximation. For this the minimal Standard Model
is regarded as a specific (parameterized) gauge theory of Dirac type. It is
shown that the latter formulation, in contrast to the usual description of the
Standard Model, gives a definite value for the Higgs mass. The predicted
value for the Higgs mass depends on the value addressed to the top mass mT.

We obtain mH = 186 ± 8 GeV for mT = 174 ± 3 GeV (direct observation of
top events), resp. mH = 184 ± 22 GeV for mT = 172 ± 10 GeV (Standard
Model electroweak fit). Although the Higgs mass is predicted to be near the
upper bound, mH is in full agreement with the range 114 � mH < 193 GeV
that is allowed by the Standard Model. We show that the inclusion of (Dirac)
massive neutrinos does not alter the results presented. We also briefly discuss
how the derived mass values are related to those obtained within the frame of
non-commutative geometry.

PACS numbers: 11.15.Ex, 12.10.Dm, 14.80.Bn
Mathematics Subject Classification: 53C07, 81T13, 81T17, 81V05, 81V10,
81V15

1. Introduction

The Higgs boson (more precisely, the physical component thereof) is known to be the last
outstanding particle predicted by the (minimal) Standard Model (STM). Within the usual
description of the STM the expected mass range of the Higgs boson is restricted to the interval
[114, 193) GeV (cf [Ros03]). This prediction of the range of the Higgs mass results from
including quantum corrections and additional experimental input. Of course, over the last

3 Since November 2005 at the TÜV NORD EnSys, Department of ETB, Hannover, Germany.
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decade there have been many attempts to better specify the value of this mass range using
different mathematical approaches to the STM. One particular mathematical approach worth
mentioning here is given within the realm of non-commutative geometry; see for instance
[Coq89, Ka91, Ka92, Ka93, GBV93, Con94, KS96] and more recently [CCM06]. For
similar approaches one may consult, for instance, [HPS91, MO94, MO96] and the appropriate
references therein.

In this paper we discuss the Higgs mass within the STM using the geometrical frame of
(parameterized) Dirac-type gauge theories (GTDT). The mathematical background of GTDT
is discussed in some detail in [TT05, Tol07]. However, in order to be self-contained we present
a purely local description of GTDT which is also needed to derive the relations for the Higgs
mass.

The basic idea of GTDT is to introduce a general geometrical setup to describe (a certain
class of) gauge theories in terms of fermions. Hence, the fundamental ingredients of GTDT are
so-called ‘generalized Dirac operators’. They basically differ from the usual Dirac operator by
a general zero-order term. This zero-order term in turn may be used to define a gauge potential
not only by a single 1-form but also by forms of various degrees (please, see below). In this
sense, Dirac-type operators may be regarded as more general than connections. Physically
speaking, generalized Dirac operators permit incorporation of different fields into one single
mathematical object, which in turn are physically motivated by the postulated interactions
of the fermions considered. Another advantage of describing gauge theories in terms of
generalized Dirac operators is that the latter naturally induce specific Lagrangian densities.
These densities can be shown to be equivariant with respect to the action of the full gauge
group including the gauge group of Yang–Mills, of gravity and the diffeomorphism group of
the underlying (spacetime) manifold. In this sense one may say that the gauge theories defined
by the corresponding Lagrangians have a ‘square root’ in terms of generalized Dirac operators.
This is not only conceptually more satisfying than the usual ‘adding of actions’, but may also
have some phenomenological consequences. Accordingly, the present paper aims at showing
how the geometrical setup of GTDT allows the specification of the range of the Higgs mass
of the STM. The calculations presented are similar to those given, for instance, in [KS97]. In
particular, we restrict our discussion to one-loop-order and top-quark-mass approximation.

One basic feature of GTDT is that it is logically inconsistent to assume that spacetime
is flat. This is because a Dirac-type operator generically yields a non-vanishing energy–
momentum tensor which in turn implies a non-vanishing curvature of spacetime. However,
one may still assume that gravitational effects may be negligible in comparison with some given
energy scale naturally implied by the gauge theory at hand. In fact, this is our basic assumption
as far as the presented calculations of the Higgs mass are concerned (for a corresponding
justification see also the concluding remarks related to this issue). Moreover, it is assumed
that the Standard Model (as well as perturbation theory) is valid up to a certain energy scale
Ec, which is much smaller than the Planck scale but significantly higher than the scale set by
the yet to find Higgs mass.

The paper is organized as follows. In section 2 we present a purely local description
of GTDT as is needed to follow the line of reasoning involved in the calculation of the
Higgs mass. In section 3 we summarize the STM as it is described as a special GTDT.
There we also present a natural parametrization of the general mathematical scheme that is
presented in [TT05]. In section 4 we discuss the parameter relations between the appropriately
parameterized GTDT of the STM with its usual mathematical description. We then discuss the
resulting renormalization flow equations for the energy dependence of the coupling constants
to one-loop-order and in top-quark-mass approximation. This is done in the MS scheme.
Afterward we discuss the possible changes when a massive neutrino sector is included. We
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also discuss in this section the principal bounds of the Higgs mass within GTDT. In section 5 we
compare our results with those presented within the geometrical scheme of non-commutative
geometry. We conclude with some comments on the results discussed in this paper. In the
appendix we briefly summarize the relations between the gauge couplings and the empirical
parameters used in this paper.

2. GTDT—a local description

In this section, we present a local description of gauge theories of Dirac type in the case of a
four-dimensional (parallelizable) Lorentzian manifold. This description will then be applied
to the (minimal) Standard Model in the following section in order to obtain some statements
about the mass of the (physical component of the) Higgs boson.

Basically, a GTDT is given by the following universal (Dirac-) Lagrangian:

LD := (ψ̄ iDψ + VD)
√

−|g| d4x, (1)

VD ≡ N

2
rM + tr(γ µν[θµ, θν]) +

1

8
gµν tr(γ σ [θσ , γ µ]γ λ[θλ, γ

ν]). (2)

Here, |g| ≡ det(gµν) and rM denotes the Ricci scalar curvature with respect to the Lorentz
metric gµν of signature −2. The Dirac matrices γ µ ∈ MN(C) fulfil the Clifford relation
{γ µ, γ ν} ≡ γ µγ ν + γ νγ µ = −2gµν1N, with gµν being the inverse of gµν. Also, we use the
common abbreviation γ µν ≡ 1

2 [γ µ, γ ν] for the generators of the (proper orthochroneous)
Lorentz transformations in the spin representation. The dimension N ≡ 4NF of the
representation space is given by the ‘fermion representation’, i.e. ψ ∈ C∞(M, C4 ⊗ CNF). In
the following M ⊂ R4 denotes some open (connected) subset such that TM � M × R4.

The Dirac operator D = γ µ∇D
µ is defined in terms of the (Dirac) connection

∇D
µ := ∂µ + ωµ + θµ

≡ ∇S
µ + θµ, (3)

with ωµ ≡ 1
4γ αβωµαβ ∈ C∞(M, MN(C)) being the spin-connection form and ∇S

µ the
corresponding spin connection with respect to gµν. Also, the 1-form θµ ∈ C∞(M, MN(C))

denotes a general gauge potential. The connection (3) is called a Clifford connection (or,
twisted spin-connection) if the general gauge potential θµ fulfils

[θµ, γ ν] = 0. (4)

In this case we write θµ = Aµ, such that a Clifford connection reads4

∇D
µ ≡ ∇Cl

µ := ∂µ + ωµ + Aµ

= ∇S
µ + Aµ. (5)

Accordingly, the Dirac operator D is then called a ‘twisted spin Dirac operator’. However, for a
general gauge potential θµ one has [θµ, γ ν] �= 0. In this more general situation the appropriate
Dirac operator D is known as a generalized Dirac operator (or, operator of Dirac type), see for
example in [ABS64, BGV96]. In what follows, however, we will refer to D = γ µ∇D

µ simply
as a Dirac operator, even in the case where D is defined with respect to general (gµν, θµ).

Of course, a general gauge potential θµ can be decomposed as θµ = Aµ + (θµ − Aµ) ≡
Aµ + Hµ. It can be shown that the Dirac potential (2) is independent of such a decomposition.

4 In [TT05] the covariant derivative of a Clifford connection is denoted by ∂A. It should not be confounded with the
lifted Levi-Civita connection.
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Hence, without loss of generality we may decompose a general connection (3) into a Clifford
connection plus a general gauge potential

∇D
µ = ∇S

µ + Aµ + Hµ

= ∇Cl
µ + Hµ (6)

and thereby substitute θµ by Hµ in (2). This general gauge potential Hµ can be expressed also
in terms of the Dirac operator D itself:

Hµ = − 1
4gµνγ

ν
(
D − γ σ∇Cl

σ

)
≡ ξµ�D. (7)

Note that γ µξµ = − 1
4gµνγ

µγ ν = 1N and �D = γ µHµ. Thus, we may decompose any
(generalized) Dirac operator as

D = γ σ∇Cl
σ + �D. (8)

Note that for any gauge potential H ′
µ which fulfils the two requirements: γ µH ′

µ = γ µHµ

and ξµγ νH ′
ν = H ′

µ, one infers that H ′
µ = Hµ. Also note that

�D =
4∑

k=0

∑
0�ν1<···<νk�3

γ ν1 · · · γ νkχ(k)
ν1···νk

, (9)

with
[
χ(k)

ν1···νk
, γ µ

] = 0 being considered as k-forms on M which take values in MN(C). The
lowest order contribution χ(0) is characterized by [�D, γ µ] = 0. In contrast, the highest order
contribution ∑

0�ν1<···<ν4�3

γ ν1 · · · γ ν4χ(4)
ν1···ν4

= γ5φ (10)

fulfils the condition

{�D, γ µ} = 0, (11)

with φ ∈ C∞(M, MNF(C)) and γ5 = iγ 0 · · · γ 3 the canonical grading operator on the spinor
space (such that C4 = SL ⊕SR decomposes into the ‘left-handed’ and ‘right-handed’ spinors).
Condition (11) is analogous to (4) for it implies

[θµ, γ ν] = − 1
2δν

µγ λθλ. (12)

Moreover, the first-order contribution only yields a re-definition of the Yang–Mills gauge
potential Aµ. Hence, in the following we will omit the first-order part in �D.

The relative curvature of a Dirac-type operator is defined as

Fθ
µν := ∇S

µθν − ∇S
ν θµ + [θµ, θν]

= ∂µθν − ∂νθµ + [θµ, θν] + [ωµ, θν] − [ων, θµ]. (13)

It naturally decomposes as

Fθ
µν = F A

µν + F A,H
µν

= F A
µν + F H

µν + κA,H
µν . (14)

Here, κA,H
µν := [Aµ,Hν] − [Aν,Hµ] abbreviates the ‘interaction term’ between the gauge

potentials Aµ and Hµ. The curvature

F A,H
µν := F D

µν − F Cl
µν

= ∇Cl
µ Hν − ∇Cl

ν Hµ + [Hµ,Hν] (15)
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denotes the relative curvature of Hµ with respect to (ωµ,Aµ) and F D
µν is the curvature with

respect to the Dirac connection (3). In the case of Hµ = 0 (i.e. θµ = Aµ) the relative
curvature is called the ‘twisting curvature’ of D. Since [ωµ,Aν] = 0, the twisting curvature
F A

µν = ∇S
µAν −∇S

ν Aµ + [Aµ,Aν] coincides with the usual Yang–Mills field strength, provided
Clifford connections ∇Cl

µ are identified with Yang–Mills connections ∇A
µ ≡ ∂µ + Aµ.

There is a distinguished class of Dirac-type operators called Dirac operators of Yukawa
type (cf [TT05]). These operators are defined by

�D := γ5φ. (16)

Note that D is odd if and only if CNF = EL ⊕ ER and φ is odd. Assuming that φ �= 0,

it can be shown that the field equations for Dirac operators of Yukawa type give rise to
the existence of a constant (skew-hermitian) matrix function D ∈ C∞(M, MNF(C)) and a
real-valued smooth function h ∈ C∞(M, R) such that

φ = hD. (17)

This reduces the gauge symmetry group to the isotropy group of D. Accordingly, a
Yukawa-type Dirac operator is said to be in the unitary gauge if it reads

D = γ σ∇Cl
σ + γ5D. (18)

A Yukawa-type Dirac operator is said to represent a fermionic vacuum if

D = γ µ(∂µ + ωµ) + γ5D
≡ γ µ∇S

µ + γ5D (19)

and gµν fulfils the Einstein equation

Rµν = κgr trD2gµν. (20)

A general Yukawa-type operator is then considered as a perturbation of a fermionic
vacuum. Note that with respect to the latter any Yukawa-type operator corresponds to
(h,Aµ, hµν). Here, the metric hµν is considered as a perturbation of gµν which satisfies the
Einstein equation with the energy–momentum tensor being defined with respect to (ψ, h,Aµ).

As already mentioned in the introduction, we will neglect the influence of a non-flat spacetime
and assume that gµν = hµν ≈ ηµν. Some appropriate comments on a justification of this
assumption will be given in the conclusion.

To lowest order the metric gµν is fully determined by the spectrum of D2. In contrast, the
field equations of a Yukawa-type operator do not determine either the Yang–Mills connection
(i.e. the gauge potential Aµ), or the (physical component of the) Higgs field h. For this one has
to slightly enlarge the class of Yukawa-type operators, which is referred to as Pauli–Yukawa-
type Dirac operators (PDY). They are defined by Dirac operators of the form

D =
(

γ µ
(∇S

µ + θµ

) − 1
2γ µνF θ

µν

1
2γ µνF θ

µν γ µ
(∇S

µ + θµ

)
)

≡ γ µ
(∇S

µ + θµ

)
+ I

(
1
2γ µνF θ

µν

)
, (21)

with the fermion representation space being doubled. Here, the Higgs gauge potential reads

Hµ := ξµγ5φ and thus θµ = Aµ + ξµγ5φ. Moreover, I := (
0 −1
1 0

)
may be regarded as defining

an additional complex structure for I2 = −12. Hence, in the case of a twisted spin Dirac
operator (i.e. θµ = Aµ) a PDY reduces to D = γ µ∇Cl

µ + I
(

1
2γ µνF A

µν

)
, where the second part

formally looks like the well-known ‘Pauli term’.
The relative curvature F A,H

µν of the Higgs gauge potential explicitly reads

F A,H
µν = γ5

(
ξµ

[∇A
ν , φ

] − ξν

[∇A
µ , φ

])
+ [ξµ, ξν]φ2. (22)

Note that this (relative) curvature depends on the total field content (gµν, φ,Aµ).
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With respect to a fermionic vacuum (19) one may consider Clifford connections which
are compatible with the vacuum, i.e. gauge potentials Aµ which satisfy

[Aµ,D] = 0. (23)

In this case the interaction term κA,H
µν vanishes identically and the relative curvature (14)

reduces to

Fθ
µν = F A

µν + F H
µν. (24)

In fact, the latter relation is equivalent to the compatibility of a Clifford connection with a
fermionic vacuum.

The interaction term κA,H
µν has a simple physical meaning. With respect to the fermionic

vacuum it corresponds to the ‘Yang–Mills mass matrix’. Indeed, the ‘generalized Yang–Mills
Lagrangian’ tr Fθ

µνF
µν
θ clearly yields a term like

gαβgµν tr κA,H
µα κ

A,H
νβ ∼ (1 + h)2gµν tr(D{Aµ,Aν}D)

∼ (1 + h)2M2
abg

µνAa
µAb

ν, (25)

with M2
ab := tr(D{Ta, Tb}D) being proportional to the (squared) Yang–Mills mass matrix and

Aµ = Aa
µ Ta . Note that the generators Ta ∈ MNF(C) refer to the fermion representation.

Moreover, M2
ab equals zero exactly for those generators which commute with D.

We emphasize that the ‘generalized Pauli term’ γ µνF θ
µν in (21) does not contribute to the

fermionic part in (1) when restricted to the real sub-space of ‘particles-anti-particles’. It only
contributes to the Dirac potential VD. More precisely, for D of Pauli–Yukawa-type one obtains
the total Lagrangian

LD = (
2ψ̄

(
iγ µ∇Cl

µ + iγ5φ
)
ψ + VD

)√−|g| d4x, (26)

VD = λgr rM − (
λYM tr F A

µν

†
F

µν

A + λH tr ∇µφ†∇µφ − VH
)
. (27)

Here, ∇µφ ≡ [∇A
µ , φ

] = ∂µφ + [Aµ, φ] and

VH = αH(tr φ†φ)2 − βH tr φ†φ (28)

is the usual Higgs potential of the (minimal) Standard Model and λgr, λYM, λH, αH, βH are
real parameters to be specified in the following section. For a more detailed discussion, in
particular, of the occurrence of the factor 2 and of the grading involution γ5 in the Yukawa
coupling and the geometrical meaning of (25), we again refer to [TT05].

In the following section we will make use of (26) and (27) which formally looks like
the total Lagrangian of the (minimal) Standard Model including gravity. In fact, for specific
Yukawa-type Dirac operators one may appropriately re-write the Dirac–Lagrangian (26) to
get exactly the form of the STM-Lagrangian. The scheme proposed may also have some
phenomenological consequences since (26) is derived in one stroke by a specific class of
Pauli–Yukawa-type operators. For this, however, one still has to take into account the different
mass dimensions of the various fields and to also include an appropriate parametrization of
both the general Dirac–Lagrangian (1) and the specific class of Dirac operators one deals with.
Of course, the parametrization cannot be arbitrary. It has to be compatible with the geometrical
setup. Basically, the motivation of an appropriate parametrization of the geometrical scheme
considered comes from physics and is analogues to the introduction of the gauge-coupling
constants5 in ordinary (non-Abelian) Yang–Mills gauge theories (please, see below). Clearly,

5 These should not being regarded as a generalization of the electric charge, for the mathematical origin of the latter
is quite different from the gauge-coupling constants.
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the possible phenomenological implications of a specific geometrical description, for example,
of the STM, strongly depend on the parametrization of the geometrical scheme considered
(cf our discussion in section 5).

3. The (minimal) STM as a GTDT

As discussed in the previous section the STM-Lagrangian has a natural ‘square root’ in terms
of Pauli–Yukawa-type Dirac operators (PDY). This holds true in particular for the Higgs sector.
However, within the framework of Dirac-type gauge theories the Higgs field φ transforms with
respect to the full fermion representation of the gauge group. This is in contrast to the minimal
Standard Model where the Higgs field is supposed to transform with respect to a specific
sub-representation of the fermion representation ρF (see below). These two representations
are related to the Yukawa-coupling matrix GY which can be considered as a linear mapping
from the representation space of the Higgs field to the representation space of left-handed
fermions. For a general discussion we again refer to [TT05]. In what follows, we will restrict
ourselves to the specific case of the minimal Standard Model (see, for instance, [Nac90]).

3.1. Data of the (minimal) STM as a specific GTDT

To specify a GTDT one has to choose a gauge group G, a unitary representation ρF thereof,
as well as some (class of) Dirac operators D. In the case of the (minimal) STM these data are
specified by (here, we adopt the same notation as was used in [Tol98]):

• G equals SU(3) × SU(2) × U(1).
• ρF equals the fermion representation

EL :=
3⊕
1

[(1, 2,−1/2) ⊕ (3, 2, 1/6)],

ER :=
3⊕
1

[(1, 1,−1) ⊕ (3, 1,−1/3) ⊕ (3, 1, 2/3)],

(29)

where (n3, n2, n1) denote the tensor product, respectively, of an n3-dimensional
representation of SU(3), an n2-dimensional representation of SU(2) and a one-
dimensional representation of U(1) with ‘hypercharge’ y: ρ(eiθ ) := eiyθ , y ∈ Q, θ ∈
[0, 2π [.
More explicitly, we have

ρF := ρL ⊕ ρR : SU(3) × SU(2) × U(1) → Aut(E) ⊂ U(45) (30)

with

ρL(c, w, b) :=

c ⊗ 1N ⊗ wb

q

L 0

0 1N ⊗ wbl
L


 , (31)

ρR(c, w, b) :=

c ⊗ 1N ⊗ Bq

R 0

0 Bl
R


 (32)

and

E ≡ EL ⊕ ER

� [(
C18

q ⊕ C6
l

)]
L ⊕ [

(C9 ⊕ C9)q ⊕ C3
l

]
R. (33)
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• The Dirac operator D is of Pauli–Yukawa-type with Yukawa coupling φ given by

φ ≡ i

(
0 φ̃

φ̃† 0

)
(34)

with

φ̃ ≡ GY(ϕ) :=
(

13 ⊗ (g′q ⊗ ϕ, gq ⊗ εϕ) 0

0 gl ⊗ ϕ

)

≡
(

13 ⊗ ϕ̃q 0

0 ϕ̃l

)
. (35)

Here, respectively, g′q, gq ∈ MN(C) denote the matrices of the Yukawa-coupling constants
for quarks of electrical charge −1/3 and 2/3 (i.e. of quarks of ‘d’-type, and of ‘u’-
type) and gl ∈ MN(C) is the matrix of the Yukawa-coupling constants for the leptons
of charge -1 (i.e. of leptons of ‘electron’ type). While gq and gl can be assumed to
be diagonal and real, the matrix g′q is related to the Kobayashi–Maskawa matrix and
therefore is neither diagonal nor real. The ‘weak hyper-charges’ for the left- and right-
handed quarks (indicated by the superscript ‘q’) and leptons (superscript ‘l’) are defined
by ρ(b) := eiyθ , b ∈ U(1), y ∈ Q, θ ∈ [0, 2π [. Then, the two by two diagonal matrices
Bq

R and Bl
R in (32) are Bq

R := diag
(
bd ′

R , bu
R

)
and Bl

R := bl
R1N. Here, bu

R := eiyu
Rθ , with

yu
R being the hypercharge of the right-handed quarks of ‘u-type’ and similar for the other

quarks and leptons.
In (35), ϕ ∈ C∞(M, C2) denotes the complex Higgs field of the minimal Standard

Model. It carries the specific sub-representation ρH of the fermion representation ρF :

ρH : SU(3) × SU(2) × U(1) −→ U(2)

(c, w, b) 
→ w eiyhθ .
(36)

Finally, ε is the anti-diagonal matrix ε := (
0 1

−1 0

)
, which intertwines the fundamental

representation of SU(2) and its conjugate complex representation, and ϕ here means the
complex conjugate of ϕ.

As a sub-representation of ρF the representation ρH is fixed by the relations of the
hyper-charges of the quarks and the leptons:

yh = yl
L − yl

R = y
q

L − yd ′
R = yu

R − y
q

L. (37)

Here,(
y

q

L, yl
L

) = (1/6,−1/2),
((

yd ′
R , yu

R

)
, yl

R

) = ((−1/3, 2/3),−1), (38)

according to the fermion representation (29).

The corresponding fermionic vacuum D is given by

D := i

(
0 M

M† 0

)
, (39)

with

M ≡
(

13 ⊗ Mq 0
0 Ml

)
, Mq ≡

(
0 md ′

mu 0

)
, Ml ≡

(
0

ml

)
, (40)

where, respectively, the matrices ml := v√
2
gl ∈ MN(C) and mu := v√

2
gq ∈ MN(C) denote

the ‘mass matrices’ of the charged leptons (l) and quarks (q) of ‘u-type’. They can be
assumed to be diagonal and real. The corresponding N × N matrix md ′

:= v√
2
g′q of
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‘d-type’ quarks is neither diagonal nor real. It is related to the mass matrix of ‘d-type’
quarks md = diag(md1 , . . . , mdN),mdk ∈ R, via the Kobayashi–Maskawa matrix V ∈ U(N):
md ′ = VmdV∗. Here and above N is of appropriate size that is defined by the fermion
representation (29) (or (33)) and v > 0 is the ‘vacuum expectation value’ of the Higgs boson.

With the choice of (G, ρF,D) we have mathematically specified a particular Dirac-type
gauge theory. However, from a physical perspective we still have to appropriately parameterize
this GTDT. Of course, the parametrization cannot be arbitrary. It should be in accordance
with the geometrical frame of a GTDT. As we mentioned already, there are basically two
objects which can be parameterized: the Dirac–Lagrangian (1) and the general Dirac operator
defined by (3). Note that in the specific case at hand the parameters introduced by the Yukawa
coupling matrices only arise because of the change of the representation of the Higgs field
(i.e. to consider φ as a function of ϕ).

3.2. Geometrical parametrization

In general, an admissible parametrization of (1) is given by the commutant of the fermion
representation ρF. This is similar to the introduction of the Yang–Mills-coupling constant for
each simple gauge group. To explain this let us consider the case where G = SU(2), ρF is
some unitary representation thereof and D is specified by (21) with θµ = Aµ. In this case, the
Dirac–Lagrangian (26) reduces to

LD = (
2ψ̄ iγ µ∇Cl

µ ψ + VD
)√−|g| d4x, (41)

VD = λgrrM − λYM tr F A
µν

†
F

µν

A . (42)

Here, the constants λgr, λYM are purely numerical and basically fixed by the dimension
of spacetime and the dimension of the fermion representation. To get started we may re-scale
ψ to get rid of the factor 2 in the fermionic part of the Dirac–Lagrangian. Moreover, we may
introduce a relative constant λD ∈ R and thereby replace the total Lagrangian (41) by

LD = (
ψ̄ iγ µ∇Cl

µ ψ + λDVD
)√−|g| d4x. (43)

Of course, the free parameter λD can be absorbed by λgr, λYM, which will then be treated
as arbitrary free parameters. In particular, λgr will be proportional to Newton’s gravitational
constant (or the inverse square of the Planck length �P) after we have introduced an appropriate
length-scale to give the various fields their correct physical dimensions (see below). Next, we
take into account that all fields are represented in the fermion representation ρF. Accordingly,
there is another numerical constant λF, which only depends on ρF, such that we may re-write
the Yang–Mills part in (42) as

tr F A
µν

†
F

µν

A = λF
〈
F A

µν, F
µν

A

〉
(44)

Here, 〈·, ·〉 denotes the Killing form on su(2). Since the latter is proportional to the usual trace
with respect to the fundamental representation one may re-write again the Yang–Mills part as

λYM tr F A
µν

†
F

µν

A = 1

2g2
YM

tr F A
µνF

µν

A (45)

where on the right-hand side F A
µν is supposed to be in the fundamental representation of su(2).

It follows that

λYM = λrep
/
g2

YM (46)

with λrep being a numerical constant which is basically fixed by the fermion representation
and the fundamental representation. The constant gYM denotes the usual Yang–Mills-coupling
constant which parameterizes the most general Killing form on Lie(G).
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The specific example discussed so far can be slightly generalized by taking into account
the reducibility of ρF. Let Z = Z† be the most general element of the corresponding commutant.
In fact, Z can be regarded as a constant mapping commuting with the action of the Clifford
algebra, which can be expressed in terms of the Dirac operator as follows:

[D,Z] = 0. (47)

Note that, when considered as a condition on the mapping Z, (47) cannot be weakened either
by the condition [Dk,Z] = 0 for some integer k > 1, or by {Dk,Z} = 0 for some integer
k � 1. Indeed, the former case reduces to condition (47) and the anti-commutator condition
yields Z = 0. Basically, the reason is that only the operator [D,Z] acts as a zero-order operator
on sections ψ.

Hence, we may generalize the Yang–Mills part in the Dirac–Lagrangian (41) by

tr
(
ZF A

µν

†
F

µν

A

)
. (48)

The introduction of the commutant with respect to the fermion representation provides
us with a natural parametrization of the Dirac–Lagrangian which is compatible with the
geometrical scheme of a GTDT. Indeed, the Dirac potential is but a trace of an endomorphism
which is uniquely determined by D (cf section 2.2 in [TT05] and Prop. 3.1 in [Tol07]). As a
result, the Dirac potential (2) is replaced by

VD,Z ≡ tr(ZrM) + tr(Zγ µν[Hµ,Hν]) + 1
8gµν tr(Zγ σ [Hσ , γ µ]γ λ[Hλ, γ

ν]). (49)

Of course, in the more simple case where ρF is irreducible, this replacement just leads
back to VD,Z = λDVD.

The parametrization of D depends on its specific form. In general, one may replace Aµ

by A′
µ ≡ λ′

AAµ and (9) by

λ�D ≡
4∑

k=0

∑
0�ν1<···<νk�3

γ ν1 · · · γ νkλ(k)χ
(k)
ν1···νk

, (50)

with λ(k) being appropriate ‘coupling constants’.
For example, in the case of the PDY this corresponds to the replacement:

θµ 
→ θ ′
µ ≡ λ′θµ := λ′

AAµ + λ′
HHµ, (51)

Fθ
µν 
→ λ−1Fθ ′

µν ≡ λ−1
A F A′

µν + λ−1
H F A′,H′

µν . (52)

Here, the curvature Fθ ′
µν is defined with respect to the parameterized gauge potentials A′

µ

and H ′
µ ≡ λ′

HHµ. Of course, by re-scaling the gauge potentials one may assume without
loss of generality that λ′

A = λ′
H ≡ 1. Therefore, the parameterized PDY corresponds to the

replacement:

Fθ
µν 
→ λ−1Fθ

µν ≡ λ−1
A F A

µν + λ−1
H F A,H

µν . (53)

From a geometrical perspective such a parametrization is quite acceptable, for curvatures
are always considered as elements of vector spaces in contrast to the corresponding gauge
potentials. Moreover, the re-parametrization (53) is known from the usual geometrical
description of Yang–Mills gauge theories. However, the constants λA, λH should not be
identified with the usual Yang–Mills-coupling constants. For example, in the case of a simple
gauge group G and an irreducible fermionic representation ρF thereof, the constant λA turns
out only to be proportional to the Yang–Mills-coupling constant gYM which parameterizes the
most general Killing form of G. More precisely, one obtains

λA =
√

λYM

λrep
gYM (54)

with λYM being an arbitrary free parameter.
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Moreover, as it turns out, one may put λH equal to 1 without loss of generality (cf (58)
and (59)). However, the constant λA will be crucial for the calculation of the Higgs mass (cf
relations (76) below). Indeed, this freedom will guarantee the numerical consistence of the
presented geometrical description of the STM.

Note that the replacement D 
→ λD is mathematically inappropriate for D belongs to an
affine space. Moreover, since the relative curvature F A,H

µν decomposes into F A,H
µν = F H

µν + κA,H
µν ,

one may introduce the more general parametrization

λ−1
H F A,H

µν 
→ λ−1
H F H

µν + λ−1
int κ

A,H
µν . (55)

However, for reasons of covariance one has to identify λint with λH. Finally, the parametrization
of the off-diagonal elements of (21) by the same coupling constants(s) is enforced by quantum
field theory. In fact, it is well known that the occurrence of the Pauli term in the fermionic
part of the Lagrangian spoils the renormalizability of the fermionic theory. It therefore has to
drop out in the fermionic action (cf section five in [TT05]).

In the parameterized form the Dirac–Lagrangian with respect to the above data of the
(minimal) STM explicitly reads

LD ≡ LD,fer + LD,bos,

LD,fer := (
ψ̄ iγ µ∇Cl

µ ψ
)√−|g| d4x + i(ψ̄γ5φψ)

√
−|g| d4x, (56)

LD,bos := λgrrM

√
−|g| d4x − λ′

YM tr
(
ZF A

µν

†
F

µν

A

)√−|g| d4x

+ λ′
H tr(Z∇µφ†∇µφ)

√
−|g| d4x

− (α′
H tr Z(φ†φ)2 − β ′

H tr(Zφ†φ))
√

−|g| d4x, (57)

α′
H = 27

64

1

π tr(Z)

(
�

�P

)2 1

λ2
H

, β ′
H = 1

4

1

π tr(Z)

1

�2
P

, (58)

λ′
YM = 1

8

1

π tr(Z)

(
�

�P

)2 1

λ2
A

, λ′
H = 9

32

1

π tr(Z)

(
�

�P

)2 1

λ2
H

. (59)

Here, ψ is already appropriately re-scaled and LD,bos is normalized such that λgr = 1
16π�2

P
.

Note that there are two independent length-scales involved which are introduced for quite
different reasons. First, one arbitrary length-scale � is introduced to provide the various fields
involved with the appropriate physical (length) dimension. As a consequence, one has then to
introduce a second length-scale that is given by the Planck length �P (Newton’s gravitational
constant), to make the Einstein–Hilbert Lagrangian dimensionless. Note that to identify this
second length-scale with the Planck scale is mainly motivated by the ‘Newtonian limit’ of
Einstein’s theory of gravity. Otherwise, this second length-scale is also considered as a free
parameter. As it turns out, the length-scale � corresponds to the (inverse of the) Higgs mass
(please, see below), contrary to what one might naively expect from (58). We stress again that
all fields involved are considered to be represented with respect to the fermion representation
ρF.

4. Higgs mass relations

Since the STM-Lagrangian has a natural ‘square root’ in terms of a PDY, one obtains specific
relations between the corresponding parameters. In the following two sub-sections it will
be demonstrated how these relations yield restrictions to the Higgs mass when (one-loop)
quantum corrections are taken into account.
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4.1. Parameter relations between GTDT and the STM

In this sub-section we first re-write the parameterized Dirac–Lagrangian (56) in terms of
the ordinary fields of the STM. A comparison with the usual parametrization of the STM-
Lagrangian yields some constraints of the parameters which are not known in the usual
description of the minimal Standard Model. This discussion is analogous to what has been
presented already in [Tol98]. Hence, we will skip the details and present here only the relevant
results. With the help of these results, however, we will show how the geometrical description
of the STM in terms of GTDT gives rise to bounds of the Higgs mass. This, of course, will be
discussed in some detail in the following sub-section.

The bosonic Lagrangian within the usual description of the STM reads

LSM =
(

1

2g2
3

tr(CµνC
µν) +

1

2g2
2

tr(WµνW
µν) +

1

4g2
1

BµνB
µν

) √
−|g| d4x

+
1

2
(∇µϕ)∗(∇µϕ)

√
−|g| d4x −

[
λ(ϕ∗ϕ)2 − µ2

2
ϕ∗ϕ

] √
−|g| d4x. (60)

Here, respectively, Cµν,Wµν and Bµν denote the Yang–Mills field strengths with respect to the
fundamental representation of SU(3), SU(2) and U(1), ϕ is the usual Higgs doublet sitting
in the fundamental representation of SU(2). Its U(1) representation is defined with respect to
the hypercharge relations (37), which turn out to be crucial for re-writing (57) in terms of the
physical fields.

In terms of the data of the (minimal) Standard Model the Dirac–Lagrangian of a PDY
(57) corresponds to the bosonic STM-Lagrangian (60) provided the following relations are
fulfilled (see also [Tol98, Thu03]):

1

g2
1

= 2A
3Nyq + yl tr X

4N + tr X
,

1

g2
2

= A
3N + tr X

4N + tr X
,

1

g2
3

= 4A
N

4N + tr X
, (61)

1 = 2B
3 tr(g′qg′q∗ + gqgq∗) + tr(Xglgl∗)

4N + tr X
, (62)

λ = C
3 tr((g′qg′q∗)2 + (gqgq∗)2) + tr(X(glgl∗)2)

4N + tr X
, (63)

µ2 = 1

3π

(
1

�P

)2 3 tr(g′qg′q∗ + gqgq∗) + tr(Xglgl∗)
4N + tr X

. (64)

Here, we used the following abbreviations:

yq := 2
(
y

q

L

)2
+

(
yd ′

R

)2
+

(
yu

R

)2
, yl := 2

(
yl

L

)2
+

(
yl

R

)2
, (65)

X := λl

λq

, A := 1

12π

(
�

�P

)2

a2,

B := 1

3π

(
�

�P

)2

b2, C := 1

2π

(
�

�P

)2

b2,

(66)

with a := 1
λA

, b := 3
4

1
λH

and λq ∈ R+, as well as λl := diag(λ1l , . . . , λNl) and λil ∈ R+.

We also made use of Z = 14 ⊗ diag(zL, zR), with zL := diag(λq16N, λl ⊗ 12) and zR :=
diag(λq16N, λl) and of relations (37).

From relations (62) and (64) one immediately infers that

�H ≡ �

λH
= 2

√
2

3

1

µ
. (67)
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Table 1. Gauge couplings

Value Abs. error

g1 0.345 37 0.000 03
g2 0.629 76 0.000 20
g3 1.221 32 0.002 90

Values of the gauge couplings at the energy E0 = mZ = 91.1876 ± 0.0021 GeV, cf [Y06a].

As mentioned already, we may put λH ≡ 1 for it simply re-scales � 
→ �H according to relations
(58) and (59). As a consequence, a PDY is physically parameterized by the two constants
(�H, λYMH) instead of the three parameters (�, λA, λH) with λYMH ≡ λH/λA. Moreover, as
far as the Standard Model is concerned, the ‘relative-coupling constant’ λYMH turns out to be
numerically fixed (see below).

Because of (67), one has

�H ∼ 1/mH. (68)

Hence, the two length-scales involved in the geometrical description of the (minimal) Standard
Model as a specific GTDT are determined by the Planck mass and the mass of the Higgs.
As one may naively expect, it turns out that mH/mP ≪ 1 on one-loop and top-quark-mass
approximation. Therefore, within these approximations �H is the dominant length-scale and
gravitational effects may be fully negligible.

Relations (61)–(64) are derived on ‘tree-level’ by comparing (57) with (60). In this
approximation, however, the constraints for the gauge couplings (61) are inconsistent with the
known experimental data (cf table 1). More precisely, when taking into account the measured
values of the gauge couplings there exists no choice of the model parameters such that all
three relations for the gauge couplings are fulfilled. On the other hand, it is well known
that the gauge couplings are running couplings which depend on the considered energy scale.
Hence, according to the renormalization group philosophy, the inconsistence of (61) may be
interpreted in such a way that (61)–(64) are actually supposed to hold true only at certain
critical values of the energy scale. In the following sub-section we will make use of the
renormalization flow equations to determine these critical energy values. At the critical values
it is then possible to solve the parameter relations with respect to the Higgs self-coupling λ

from which we eventually obtain the Higgs mass via the ratio

mH

mW
=

√
16λ

g2
, (69)

where the numerical values of the gauge coupling g2 and the mass of the W-boson are regarded
to be known from experiments.

4.2. One-loop quantum corrections and the Higgs mass

In this section we follow the same strategy as in [CIKS97, CIS97] to determine the mass of
the Higgs boson.

For the STM the renormalization flow equations in one-loop and top-quark-mass
approximation have been derived in [FJSE93] using the MS scheme:

ġ1 = β1(g1) := 41

96π2
g3

1, ġ2 = β2(g2) := − 19

96π2
g3

2, ġ3 = β3(g3) := − 7

16π2
g3

3,

(70)

ġt = βt (g1, g2, g3, gt ) := 1

16π2

(
9g3

t −
(

8g2
3 +

9

4
g2

2 +
17

12
g2

1

)
gt

)
, (71)
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λ̇ = βλ(g1, g2, g3, gt , λ)

:= 1

16π2

(
96λ2 +

(
24g2

t − 9g2
2 − 3g2

1

)
λ − 6g4

t +
9

32
g4

2 +
3

32
g4

1 +
3

16
g2

1g
2
2

)
. (72)

Here, the derivative is taken with respect to a dimensionless scale parameter t = ln
(

�
E0

)
, with

� being an arbitrary energy scale and E0 reference energy. gt is the Yukawa coupling of the
top quark.

The renormalization flow equations for g1, g2, g3 can be explicitly integrated:

g1(t) = 1√
A1 − 41

48π2 t

, g2(t) = 1√
A2 + 19

48π2 t

, g3(t) = 1√
A3 + 7

8π2 t

, (73)

where Ai ≡ 1
/
g2

i (0), i = 1, . . . , 3.
We may use these solutions to determine the critical values tc for which relations (61)–(64)

are fulfilled. When relations (38) of the hyper-charges are taken into account one actually
obtains a unique value of the critical energy (N = 3 generations)

tc = 8π2

21
(3A1 − 9A2 + 4A3) (74)

= 19.322 539 88 ± 0.121 725 5988, (75)

which corresponds to Ec = (2.247 ± 0.274) × 1010 GeV. Here, we have again made use of
the experimental values summarized in table 1.

Next, we aim to find an initial value for λ at the critical scale point tc and integrate system
(71) and (72). This allows us to compute the value of λ at any scale point t where the values
for g2 and mW are known.

If one divides (63) and the third equation of (61) by (62) one obtains in the top-quark-mass
approximation

λ = 3

4
g2

t , λ2
YMH = 9

8

g2
t

g2
3

. (76)

Note that the parameter λYMH is numerically fixed by the SU(3) Yang–Mills-coupling constant
g3 and the Yukawa-coupling constant gt of the top quark at the critical scale point tc (resp. at
the critical energy Ec).

To proceed, we numerically integrate the system of differential equations (71) and (72).
First, we integrate the differential equation (71) for gt with respect to the initial value at t = 0.
For this, let t = 0 correspond to the reference energy E0 = mZ = 91.1876 ± 0.0021 GeV. We
then calculate the initial values for the top-Yukawa coupling gt from the top mass with help
of the relation

gt

g2
= 1

2

mT

mW
(77)

(cf [CIKS97]). With the data taken from table (1) and mW = 80.403 ± 0.029 GeV from
[Y063c] and the quark masses from [Y062b]:

mT = 174.2 ± 3.3 GeV (direct observation of top events), (78)

mT = 172.3 ± 10.2 GeV (Standard Model electroweak fit) (79)

we obtain as initial values

gt (0) = 0.682 214 2710 ± 0.013 391 043 34 (direct observation of top events), (80)
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gt (0) = 0.674 773 3575 ± 0.040 408 210 40 (Standard Model electroweak fit). (81)

With respect to this solution the value of gt can be computed at the scale point tc. Next, we
numerically integrate (72) with respect to the initial condition

λ(tc) = 3
4gt (tc). (82)

Finally, this allows us to calculate λ = λ(0) for the reference energy E0 = mZ = 91.187 GeV
(cf [Y062b]):

λ(0) = 0.066 1110 ± 0.005 4824 (direct observation of top events), (83)

λ(0) = 0.064 7427 ± 0.015 9511 (Standard Model electroweak fit). (84)

As a consequence, we obtain for the Higgs mass the values

mH = 185.6990 ± 7.6789 GeV (direct observation of top events), (85)

mH = 183.7671 ± 21.4054 GeV (Standard Model electroweak fit) (86)

for mW = 80.403 ± 0.029 GeV (cf [Y062b, Y063c]). Here, the error is due to the errors
of the initial values of g1, g2, g3, tc and mW,mT as well as their influence on the numerical
integration of the renormalization flow equations.

According to the STM the Higgs mass can be restricted to the interval (cf [Ros03]):

mH ∈ [114, 193) GeV. (87)

It is valid for the STM with one Higgs boson and without super-symmetry. As a result,
the predicted value of the Higgs mass within the geometrical frame of GTDT is found to be at
the upper bound of the interval (87).

4.3. Model bounds for the Higgs mass and massive neutrinos

For the sake of completeness (and comparison, see below), we briefly discuss here how the
statement (85) may be weakened if one introduces the most general parametrization of the
PDY. We stress, however, that such a parametrization is not favored by the geometrical setup of
GTDT (cf [TT05]). Disregarding geometry, however, such a non-geometrical parametrization
may be still of interest for it yields the principal model bounds for the predicted value of the
Higgs mass within the mathematical frame presented. In this sub-section, we also briefly
discuss how the statement (85) may depend on massive neutrinos.

From the naive point of view of ‘counting free parameters’ one may parameterize (53)
also as follows:

λ−1Fθ
µν ≡ λ−1

A F A
µν + λ−1

H (∂µHν − ∂νHµ + [Aµ,Hν] − [Aν,Hµ]) + λ−1
self[Hµ,Hν]

= λ−1
A F A

µν + λ−1
H

([∇A
µ ,Hν

] − [∇A
ν ,Hµ

])
+ λ−1

self[Hµ,Hν]. (88)

It turns out that this non-geometrical parametrization of the PDY does not change the
critical scale point tc. In particular, (88) does not alter the uniqueness of the critical energy
point Ec. Nonetheless, the parametrization (88) gives rise to a ‘fuzziness’ of the predicted
Higgs mass, similar to what is obtained within the ‘(real) Connes–Lott’ description of the
STM (please, see the following section).

To obtain the general bounds for the Higgs mass we have to consider the Dirac–Lagrangian
for PDY’s with the Pauli term being parameterized like (88). One gets the same expressions
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as in (56) and (57), however, with different pre-factors. In the case considered they read

α′
H = 27

64

1

π tr(Z)

(
�

�P

)2 1

λ2
self

, β ′
H = 1

4

1

π tr(Z)

1

�2
P

, (89)

λ′
YM = 1

8

1

π tr(Z)

(
�

�P

)2 1

λ2
A

, λ′
H = 9

32

1

π tr(Z)

(
�

�P

)2 1

λ2
H

. (90)

These relations differ from (58) and (59) only by the self-coupling constant α′
H due to the

parametrization (88).
By the same analysis as for the geometrically parameterized PDY one obtains parameter

relations analogous to (61)–(64). They only differ from the latter in the definition of the
constants A,B,C :

A := 1

12π

(
�H

�P

)2

λ2
YMH, B := 3

16π

(
�H

�P

)2

, C := 9

32π

(
�H

�P

)2

λ2
H,self (91)

where again �H ≡ �/λH, λYMH ≡ λH/λA and λH,self := λH/λself .

Doing the same analysis as in the previous section one concludes that the value for the
critical scale point does not change. Basically, the reason is that the relations for the gauge
couplings (61) remain the same. For this reason one may proceed in the same way as before
to end up with

λ2
YMH = 9

8

g2
t

g2
3

, λ = 3

4
λ2

H,selfg
2
t . (92)

Therefore, with respect to the more general parametrization (�H, λYMH, λH,self) the value of the
Higgs self-coupling constant λ at the critical scale point is not fixed by the appropriate value
of gt (tc). In other words, unlike to the geometrical parametrization, essentially defined by
the length scale �H � 1/mH, the non-geometrical parametrization gives rise to an additional
coupling constant λH,self, that is also tied to the Higgs mass.

In what follows we abbreviate κ := 3
4λ2

H,selfg
2
t . We now have to integrate the flow

equation (72) with respect to the initial value

λ(tc) = κ, κ > 0. (93)

The model bounds are then determined by the boundary values for (71) with respect to
(93), which give rise to the minimal and the maximal values for the Higgs mass.

Due to standard theorems on ordinary differential equations the values of the solutions at
a certain scale point t of (72) depend monotonically on the initial value (cf [Ama83]). Hence,
the lower bound for the Higgs mass is determined by integrating (71) and calculating mH with
respect to (69) at λ(tc) = 0. One gets for the considered cases for the top mass

mH = 130.952 GeV (direct observation of top events), (94)

mH = 113.142 GeV (Standard Model electroweak fit). (95)

In order to obtain an upper bound for the Higgs mass one looks for a differential equation

λ̇ = β̃λ (96)

such that

(1) for the same initial values κ the solutions of this equation are upper bounds of the solutions
of (72);

(2) the solutions explicitly depend on the initial value κ .
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The second property permits us to calculate the limit κ → +∞ which yields the upper
bound for all possible solutions of (72).

One may define β̃λ in the following way:

β̃λ := �1λ
2 + �2λ + �3,

�1 := 6

π2
, �2 := 1

16π2

(
24gt

2(0) − 9g2
2(tc + �tc) − 3g1

2(0)
)
,

�3 := 1

16π2

(
−6gt

4(tc + �tc) +
9

32
g2

4(0) +
3

32
g1

4(tc + �tc) +
3

16
g2

2(0)g1
2(tc + �tc)

)
.

(97)

Here, �tc is the error of the critical scale point tc. We also used the following abbreviations:

g1(t) := 1√
A1 − �A1 − 41

48π2 t

, g2(t) := 1√
A2 − �A2 + 18

48π2 t

,

g3(t) := 1√
A3 − �A3 + 8

7π2 t

,

(98)

and

g1(t) := 1√
A1 + �A1 − 41

48π2 t

, g2(t) := 1√
A2 + �A2 + 18

48π2 t

,

g3(t) := 1√
A3 + �A3 + 8

7π2 t

,

�Ai := 2
�gi

g3
i,0

, i = 1, . . . , 3,

(99)

with �gi being the error of the initial value gi,0 (cf table 1).
Here, gt (t) is the solution of the initial value problem

ġt (t) = 1

16π2

(
9gt

3 −
(

8g3
2 +

9

4
g2

2 +
17

12
g1

2

)
gt

)
, gt = gt0 + �gt, (100)

and gt is the solution of the initial value problem

ġt (t) = 1

16π2

(
9gt

3 −
(

8g3
2 +

9

4
g2

2 +
17

12
g1

2

)
gt

)
, gt = gt0 − �gt, (101)

with �gt being the error of the initial value gt0 (cf (80) and (81)).
Any solution λ̃ of (96) with initial value κ > 0 fulfils λ̃(t) � λ(t) for t � 0, with λ(t)

being the solution of (72) with initial value κ . Using (97), the differential equation (96) can
be explicitly solved for arbitrary initial value κ:

λ̃(t) =
√

|β| coth

(
�1β√|β| (t − tc) + arcoth

(
κ + α√|β|

))
− α,

α := 1

2

�1

�2
, β := −1

4

�2
2

�2
1

+
�3

�1
, β < 0.

(102)

This permits us to calculate λ̃as(t) := limκ→∞ λ̃(t):

λ̃as(t) :=
√

|β| coth
( �1β√|β| (t − tc)

)
− α, (103)
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which finally yields the upper bound mH for the Higgs mass at the scale point t = 0 :

λ̃as(0) = 0.463 874 798 ⇒ mH = 492.232 373 GeV (direct observation top events),

(104)

λ̃as(0) = 0.459 830 097 ⇒ mH = 490.081 276 GeV (SM electroweak fit). (105)

Therefore, we end up with the following range of the predicted value of the Higgs mass:

mH ∈ [130.95, 492.23) GeV (direct observation of top events), (106)

mH ∈ [113.14, 490.08) GeV (Standard Model electroweak fit). (107)

Obviously, this range has a non-empty intersection with (87). In particular, it has a lower
bound close to the expected value of the Higgs mass. Note that the upper bound corresponds
to a rough estimate, only.

Next, we discuss a simple modification of the STM which takes into account the possibility
of massive neutrinos. We restrict ourselves to a few remarks concerning so-called ‘Dirac-type
mass terms’ which seems to fit best with GTDT.

The STM can easily be enhanced with a right-handed neutrino sector by replacing ρF,R

in (30) as follows:

ρ(c,w, θ) := diag(c ⊗ 1N ⊗ diag
(
eiyd′

R θ , 1N ⊗ diag
(
eiye

Rθ , eiyν
Rθ

))
, (108)

with, respectively, ye
R, yν

R ∈ Q being the hyper-charges of the right-handed electron and
neutrino. Accordingly, the matrix φ̃ in (35) has to be modified by

φ̃ := diag

(
13 ⊗

(
g′qϕ1 gq ϕ̄2

g′qϕ2 −gq ϕ̄1

)
,

(
g′lϕ1 gl ϕ̄2

g′lϕ2 −gl ϕ̄1

))
, (109)

where g′l and gl are the corresponding leptonic Yukawa-coupling matrices.
This simple modification of the STM permits us to construct a theory that also contains

massive neutrinos. The appropriate neutrino mass terms are generated by so-called Dirac-type
mass terms. It is known, however, that there exist other neutrino mass generating mechanisms
as well (cf [Bil02, BGGM03]).

Since Dirac-type mass terms result by only modifying the (right-handed) representation
of the gauge group of the STM, one may perform exactly the same analysis as has been carried
out in the foregoing section. It turns out that the critical energy scale tc (and hence Ec) is
identical with (75). Moreover, since relations (76) are unchanged one ends up with the same
predicted value of the Higgs mass (85) and (86) as in the STM without massive neutrinos.
Note that this is indeed remarkable, for the parameter relations which correspond to (61)–(64)
are nonetheless different from the relations obtained in the case of massless neutrinos.

5. A brief comparison with NCG

As mentioned already in the introduction there are various different geometrical descriptions
of the STM. Some of these were especially addressed to make predictions of the Higgs mass.
Therefore, it may be also of interest to briefly discuss how some of these approaches to the
STM are related to the frame presented here. In what follows, we will restrict ourselves to two
different geometrical descriptions of the STM within the general frame of non-commutative
geometry. One of which is usually referred to as ‘Chamseddine–Connes model (CCM)’
(see, for example [CC97, CIKS97, CIS97] and for a version including massive neutrinos
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[CCM06]) and which has some formal similarity to GTDT. The second approach (which can
be actually regarded as the predecessor of CCM) is called the ‘Connes–Lott model (CLM)’
(see, for example [CL90, SZ95, KS97, IKS95a, IKS95b, CIS99, CIS97, IS96]). This model
is based on Connes’ general ideas of non-commutative geometry as presented, for example,
in [Con94, GBVF01, SZ95].

In the following we mainly discuss what is referred to as the ‘soft version’ of either of
these approaches to the STM. The soft version of CLM and CCM (in contrast to the so-called
stiff version) also takes into account the possibility of a non-trivial parametrization. Hence,
it is more appropriate to compare these versions of CLM and CCM with the presented frame
of GTDT. Moreover, the non-parameterized (stiff) versions seem physically inappropriate
analogous to ordinary Yang–Mills theory when the gauge-coupling constant is chosen to
be equal to 1. Such a non-parameterized version is admissible only with respect to a
purely mathematical discussion of the corresponding geometrical scheme. Indeed, a non-
parametrization usually yields contradictions with experiments, for it physically corresponds
to set (at least some of) the admissible free parameters of a physical theory equal to 1
(see, for instance, [CIS99]). Of course, a specific geometrical setup gives sever restrictions
to the admissible parametrization of the scheme considered. Hence, different geometrical
descriptions of the same physical theory (like the STM) may also yield different constraints
on the corresponding parameter set.

In this section, the cited values for the Higgs mass almost exclusively refer to the older
assumed value of the top mass of about 175 GeV. In order to compare the different NCG
approaches with the geometrical approach proposed in this paper, we mention that in the case
of mT = 175 ± 6 GeV the predicted value of the Higgs mass within GTDT reads

mH = 188 ± 15 GeV. (110)

Note that this value also refers to the older values of, respectively, the W-mass mW =
80.33 ± 0.15 GeV and g1 = 0.3575, g2 = 0.6507, g3 = 1.218 at E0 = mZ = 91.187 GeV.

The appropriate critical energy scale is given by Ec = 0.96 × 1010 GeV.

5.1. Comparison with the CCM

The formal similarity in the geometrical description of the STM between CCM and GTDT
is that in both approaches Dirac–Yukawa-type operators play a basic role. The motivation,
however, is very different. Within the frame of CCM these generalized Dirac operators
are motivated by non-commutative geometry (via the tensor product of spectral triples). In
contrast, in GTDT the Dirac–Yukawa-type Dirac operators naturally arise from the Bochner–
Lichnerowicz–Weitzenböck decomposition. Physically, these Dirac operators are motivated
by perturbation theory and the Yukawa coupling. The basic difference of both approaches
lies in the ‘action’. Indeed, CCM postulates what is referred to as spectral action which
incorporates gravity within non-commutative geometry (cf [CC97]). Basically, the evaluation
of the spectral action consists of a (sophistically) modified heat kernel asymptotic (see, for
instance, in [GBVF01]) up to the second non-trivial coefficient including the ‘cosmological
constant’ and quadratic Riemannian curvature terms. As a consequence, the STM Lagrangian
is only reproduced if the base manifold is assumed to be flat and the cosmological constant
is disregarded. Moreover, for the heat expansion to make mathematically sense one has to
deal with (closed) compact Riemannian manifolds instead of (open) Lorentzian manifolds to
geometrically model ‘spacetime’ (see also [Sakh75, Sakh82]). In contrast, GTDT only uses
(globally defined) densities instead of functionals. Moreover, in the latter scheme a specific
Lagrangian (1) is canonically associated with every Dirac operator (which, in particular, may
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have arbitrary signature, cf [TT05]). This Lagrangian is fully determined by the Dirac operator
in question.

The evaluation of the (soft) spectral action with respect to the Dirac–Yukawa operator
that is defined by (29)–(37) leads to parameter relations which are similar to (61)–(64), see,
for example, [CIKS97]). In this reference, also the value of the Higgs mass is calculated by a
similar analysis to that presented in the previous section. It turns out that the parameter relations
for the gauge couplings (61) are equivalent to those derived within CCM. The reason for this
is that these relations basically follow from the fermion representation of the gauge fields.
This, however, is supposed to hold true in both descriptions of the STM. As a consequence,
one obtains the same critical scale point (75) and hence also the same critical energy Ec. On
the other hand, all other parameter relations turn out to be essentially different from those
presented here. As a consequence, one obtains a different value for the Higgs mass (see again
[CIKS97], as well as [CIS99])

mH = 190 ± 5 GeV (soft action), (111)

where mT = 175 ± 6 GeV and Ec = 0.96 × 1010 GeV.

Unfortunately, these predictions of the Higgs mass are of limited value insofar as
the CCM approach to the STM is incompatible with certain experimentally known values
of the (ratio of the) gauge- and Yukawa-coupling constants. Indeed, the parameter relations of
the CCM (for the so-called stiff action) imply the following relation at the critical scale point
tc between the SU(3)-gauge-coupling constant and the Yukawa-coupling constant of the top
quark:

g2
3

g2
t

= 3

2
. (112)

This relation, however, is not compatible with the known experimental data. A similar
numerical inconsistency is obtained also in the case of the so-called ‘soft-action’ (see again
[CIKS97]; a detailed discussion may be found in [Thu03]). The same holds true with respect
to the value mH = 175+5.8

−7.8 (with mT = 178.0 ± 6 GeV and Ec = 1.1 × 1017 GeV) for the
Higgs mass presented in [KS06], since this value also refers to the CCM (cf also the discussion
about the role of gravity in the conclusion).

In [CCM06] the authors discuss the inclusion of Majorana spinors in the CCM approach
to the STM. From an analysis similar to the one presented here, the authors arrive at a predicted
Higgs mass

mH ≈ 168–170 GeV. (113)

The concrete value depends on the specific assumptions made on the expected mass of the
neutrinos. For example, the value mH ≈ 170 GeV holds if all but the top mass is neglected.
The corresponding discussion parallels that already presented in [KS06]. In contrast, if one
of the neutrino masses is supposed to be of the order of the top mass, then mH ≈ 168 GeV.

However, value (113) of the Higgs mass only follows from the ‘stiff’ action of the CCM.
As a consequence, the calculated parameter relations imply the GUT relations between the
Yang–Mills-coupling constants:

g2
3 = g2

2 = 5
3g2

1 . (114)

As the authors remark, these relations are known to contradict the measured values of the
coupling constants at the W-mass scale. Indeed, the renormalization flow does not yield
relations (114) at the GUT energy scale when the measured values of the gauge-coupling
constants at the W-mass energy scale are taken into account as initial conditions. This is
usually interpreted in such a way that there is no ‘big desert’. However, the existence of
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a big desert is a basic assumption in the CCM and CLM approach to the STM (like in the
geometrical description presented in this work, cf our remarks in the introduction). Actually,
in [CCM06] the authors do not take into account the second equality in (114) in order to
calculate the value of the Higgs mass (113). Indeed, the first equality in (114) yields a unique
critical energy scale of about Ec ∼ 1017 GeV, being seven order of magnitudes higher than the
critical energy scale in GTDT. From the corresponding discussion in [KS06], it follows that
the higher the critical energy scale (i.e. the bigger the desert), the lower the predicted value of
the Higgs mass within NCG.

Besides the numerical inconsistence that is implied by the full GUT relations (114),
one may also ask for the ‘inner consistence’, for example, with respect to the assumption
that gravitational effects are negligible also on an energy scale that is only two order of
magnitudes below the Planck scale (cf also our corresponding discussion at the end of the
paper). Nonetheless, one may infer from the results presented in [CCM06] that adding massive
neutrinos to the STM seems to (slightly) lower the value of the Higgs mass.

The inclusion of neutrino masses, as presented in [CCM06], may also have the interesting
feature to remedy the numerical inconsistence (112) in the CCM approach to the STM. Relation
(112) actually depends on the assumptions made about the value of the neutrino masses. Hence,
one may ask for the order of magnitude of the neutrino masses that is necessary to overcome
the numerical inconsistence caused by relation (112). Let us recall that the latter relation is
derived under the assumption of the validity of the top-quark-mass approximation.

In contrast to relation (112), in the geometrical frame presented the above relation between
the Yukawa-coupling constant and the SU(3)-gauge-coupling constant is replaced by (76)
which includes the free ‘relative-coupling constant’ λYMH. This additional free parameter has
its origin in the generalization of the usual Yang–Mills curvature. It is quite remarkable
that the tree-level relations (58) and (59) are such that only λH, but not λA, can be chosen
equal to 1 without loss of generality. This is because of the usual Yang–Mills term in the
bosonic Lagrangian (57). It is this subtle interplay between the usual Yang–Mills curvature
and its generalization with respect to the Higgs gauge potential which allows the presented
geometrical description of the STM to be numerically consistent.

5.2. Comparison with the CLM

The Connes–Lott approach to the Standard Model is clearly conceptually different from
the geometrical frame presented here. The CLM essentially incorporates the basic ideas
of Connes’ mathematical theory of non-commutative geometry. Hence, it does not come
as a surprise that the appropriate parameter relations obtained from the CLM are basically
different from those implied by the GTDT approach to the STM (cf [CIS99]). Yet, in both
geometrical schemes Dirac-type operators of the form (19) play a fundamental role though
their geometrical origin and physical interpretation are quite different. Indeed, in the CLM
the geometrical role of the operators (19) is two-fold: first, they correspond to total exterior
derivatives (in this context D is referred to as the ‘inner Dirac operator’); second, (19) induces
the non-commutative analogue of the Riemannian volume measure µM in the bosonic action
(Dixmier trace). However, the fermionic and the bosonic CLM-action are defined in totally
different ways, in contrast to the CCM and the frame presented here. In any case, in the CLM
the (Riemannian) metric has to be chosen by hand, similar to the case of Yang–Mills gauge
theories. Actually, the bosonic action in the CLM frame is a non-commutative generalization
of the usual (Euclidean) Yang–Mills action. Of course, as far as the calculation of the value
of the Higgs mass is concerned, the metric independence of (19) does not matter. However,
from a purely conceptual perspective the arbitrariness of the metric seems unsatisfying (like
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in the usual Yang–Mills gauge theories) and may serve as the main motivation to change the
definition of the bosonic action within non-commutative geometry from the Dixmier trace to
the spectral action (cf [Con88, Con96]).

During the last decade different CLM approaches to the STM have been developed.
Accordingly, there are also various statements about the predicted value of the mass of the
Higgs within the frame of non-commutative geometry (see, for example, [Con95]). Within
Connes’ real geometry the fermionic representation, considered as an algebra representation,
can be chosen differently from (29). As a consequence, the commutant is also differently
parameterized. Moreover, one also obtains more freedom to parameterize the appropriate
scalar products used to define the fermionic and bosonic actions in the (real) CLM. Note
that the introduction of the real structure also yields a doubling of the gauge degrees of
fermionic freedom quite similar to what is needed in order to introduce the Pauli–Dirac–
Yukawa operator (21) (see also our discussion in [TT05]). Therefore, in contrast to the CCM
and GTDT approach to the STM, within the (real) CLM one does not obtain a unique critical
scale point tc on which the corresponding parameter relations are assumed to hold true but,
instead, a whole range of such points. This range corresponds to the energy interval

Ec ∈ [mZ, 2 × 105) GeV. (115)

Hence, in the (real) CLM the critical energy point Ec is at least by five orders less than in
GTDT (and CCM). Accordingly, the predicted values of the Higgs mass are contained within
the interval (again, for mT = 175 ± 6 GeV)

mH ∈ (194.5, 291] GeV, (soft action) (116)

which has an empty intersection with (87) (cf [IKS95a, IKS95b, CIS99]). This, in fact,
remains true even if one restricts the commutant and thus the parametrization in the CLM. For
example, analogous to GTDT there is also a geometrically distinguished parametrization in
(the real) CLM which gives rise to the following definite value of the Higgs mass on tree-level
(for mT = 175 GeV and Ec = mZ, cf loc. sit.):

mH = 289 GeV. (117)

6. Conclusion

In this paper, we discussed the possible values of the Higgs mass as is predicted by the
(minimal) Standard Model when the latter is considered as a specific gauge theory of Dirac
type. We have shown that this approach to the STM permits us to yield (in a specific
approximation including quantum corrections) a definite value of the Higgs mass without
referring to additional assumptions coming, for instance, from cosmology. This is quite in
contrast to the usual (non-geometrical) description of the STM, which only gives rise to a
whole range of possible values of the Higgs mass. Within the GTDT approach to the STM
the predicted value of the Higgs mass is in full accordance with the STM range, though
it lies on the upper bound of the allowed interval. The presented approach of the STM
clearly demonstrates once more the power of a geometrical understanding of physics and,
in the case at hand, of the Standard Model of particle physics. This is emphasized by the
circumstance, that a non-geometrical parametrization of a geometrical description may usually
yield a ‘fuzziness’ of the predictive power. To demonstrate this we also discussed the most
general (but non-geometrical) parametrization possible in the GTDT approach to the STM.
Similar to the Connes–Lott approach to the STM this gives rise to an interval of possible values
of the Higgs mass. In the frame presented, however, this interval has been shown to have
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a non-empty intersection with the allowed STM range. In particular, the GTDT predicted
lower bound is close to the lower bound of the STM range. In the presented geometrical
scheme the fuzziness in the prediction of the value of the Higgs mass is originated only in the
‘self-interaction’ [Hµ,Hν] of the Higgs gauge potential. Of course, when expressed in terms
of the usual Higgs potential VH it is this self-interaction which gives rise to the mass of the
physical Higgs boson.

We also discussed how the predicted value of the Higgs mass may depend on the existence
of massive neutrinos. It turns out that the inclusion of Dirac-type mass terms to the STM
does not alter the results presented. However, the inclusion of Majorana mass terms in our
approach is less straightforward and not taken into account in this work but will be discussed
separately in a forthcoming paper. Like in [CCM06] it is expected that such an inclusion in
GTDT will also yield a (slightly) lower value of the Higgs mass predicted.

Since there are some similarities to other geometrical approaches to the STM, we included
a brief comparison of our approach, in particular, with the Chamseddine–Connes and the (real)
Connes–Lott approach to the STM concerning the Higgs mass.

Some comments on the role of gravity within GTDT may be worth mentioning. Actually,
Einstein’s theory of gravity is an integral part of GTDT. Although neglected in our discussion
of the Higgs mass, it plays a fundamental role in this approach to the STM. This is because
it is intimately related to spontaneous symmetry breaking. Indeed, spontaneous symmetry
breaking is considered as being due to the Higgs gauge potential

Hµ ∼ gµνγ
νγ5φ.

Accordingly, the role of the usual Higgs potential VH is regarded as only giving rise to
the mass of the Higgs boson. Concerning the numerical calculations of the value of the Higgs
mass done in this paper, gravitational effects are assumed to be negligible (similar to other
approaches). The physical reason that this can be done without contradictions within the
setup of GTDT is that the two length-scales involved, �H and �P, are actually independent
of each other. The drawback of this independence, of course, is that GTDT seems not to
permit a unification of gravity with the strong and the electroweak interactions of the STM.
On the other hand, on the energy scales considered one may not expect such a unification. In
fact, one obtains for the critical energy point Ec, on which the parameter relations are shown
to hold true, that Ec/mP ≪ 1. Accordingly, one has mH/mP ≪ 1 (resp. �H/�P ≫ 1),
as is usually expected (and also very much hoped for). At least, this demonstrates that
the GTDT approach to the STM is consistent with the common assumption that gravity is
generically negligible within the range of validity of the STM, although Einstein’s theory of
gravity is naturally included within GTDT. This may also be inferred from the following rough
qualitative considerations. The Euler–Lagrange equation of the Dirac Lagrangian (56) with
respect to the metric yields the Einstein equation with the energy–momentum tensor being
defined by LSTM. When all field excitations are neglected (i.e. putting all fields equal to 0) this
yields the non-vanishing scalar curvature

rM = −π

2

(
mH
mP

)2

λ
m2

H

≈ −10−13

2π
/cm2. (118)

Here, we took into account the values of the Higgs mass (85) and of the Higgs self-
coupling constant (83). Though already small value (118) should be contrasted with a typical
cross section σ of a high energy process such that the dimensionless product rMσ may be
physically interpreted as the quotient of the two relative accelerations caused by gravitational
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and high energy effects, respectively. Roughly, the order of magnitude of a typical σ ranges
from σ ≈ 10−35 cm2 (weak interaction) to σ ≈ 10−26 cm2 (strong interaction). Hence,

|rMσ | � 10−40 (119)

which demonstrates again that gravitational effects are fully negligible on the scale �H.
Qualitatively, this does not change even if field excitations are taken into account, for example,
by the replacement mH � κmH, provided that 1 � κ < κ0 ≡ 1010. Here, κ0 is defined such
that |rMσ | ≈ 1 where gravitational effects become comparable with typical high energy effects
(of the strong interaction). Note that the critical energy scale Ec ≈ 1010 GeV corresponds
to κ ≈ 108. Thus, also on the critical energy scale where the parameter relations (61)–(64)
are assumed to hold true, the high energy effects still significantly dominate the gravitational
effects since |rMσ | � 10−8. This, however, does not hold true any longer for a critical energy
scale Ec ≈ 1013 − 1017 GeV (cf [CIS99, KS06, CCM06]).

Irrespective of the concrete value and the geometrical scheme (commutative or non-
commutative), it seems most remarkable that a prediction of a definite value of the Higgs mass
can be obtained from the pure Standard Model without additional assumptions, provided the
Standard Model is described in geometrical terms. Of course, that the Standard Model can be
geometrically described at all is certainly in itself a quite remarkable fact, which one has to
take into account in any theory that aims to go beyond the Standard Model.

Appendix. Relations between gauge couplings and empirical Parameters

For the sake of convenience for the reader, in this appendix we recall how the gauge couplings
g1, g2, g3 are related to the experimentally accessible parameters given by the strong-coupling
constant αS, the fine structure constant α and the electroweak mixing angle sin2 ϑW. For the
actual values of these empirical date we refer to [Y06a].

To obtain the relations between the gauge couplings and the above-mentioned empirical
parameters we consider the electroweak sector of the fermionic Lagrangian density of the
(minimal) Standard Model (here, the conventions used are those given in [Nac90]):

Lint
elw = e

{
iAµJµ

em +
i

sin ϑW cos ϑW
ZµJ

µ

NC +
i√

2 sin ϑW

(
W +

µJ
µ

CC + W−
µ J

µ†
CC

)}
d4x, (A.1)

with the currents being defined by

Jµ
em := ψ̄γ µ(T3 + Y )ψ,

J
µ

NC := ψ̄γ µ(T3 − sin2 ϑW(T3 + Y ))ψ,

J
µ

CC := ψ̄γ µ(T1 + iT2)ψ.

(A.2)

As usual, the physical fields are Aµ,Zµ and W±
µ , where

Aµ := cos ϑWW 3
µ − sin ϑWBµ,

Zµ := sin ϑWW 3
µ + cos ϑWBµ,

W±
µ := 1√

2

(
W 1

µ ∓ iW 2
µ

)
,

(A.3)

with, respectively, Wa
µ (a = 1, 2, 3) being the gauge fields of the SU(2) coupling and Ta are

the appropriate generators. Here, Bµ is the gauge field of the U(1) coupling with generator
Y according to the fermionic representation. Note that, in contrast to the conventions used in
the main text of the paper, the (non-physical) fields Wa

µ and Bµ are re-scaled:

Wa
µ → g2W

a
µ, Bµ → g1Bµ. (A.4)
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With these conventions in mind, the interaction Lagrangian density of the electroweak
sector of the (minimal) Standard Model reads

Lint
elw = ψ̄ iγ µ

(
e

cos ϑW

BµY +
e

sin ϑW
Wa

µTa

)
ψ d4x. (A.5)

Accordingly, the gauge couplings are identified with

g1 = e

cos ϑW
= e√

1 − sin2 ϑW

, g2 = e

sin ϑW
. (A.6)

Finally, using 4πα ≡ e2, one gets

g1 =
√

4πα

1 − sin2 ϑW

, g2 =
√

4πα

sin ϑW
. (A.7)

Similar to the definition of the fine structure constant, the relation between the SU(3)-coupling
g3 and the strong-coupling constant αS reads

g3 =
√

4παS. (A.8)
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[GBV93] Gracia-Bondı́a J M and Vàrily J C 1993 Connes’ noncommutative differential geometry and the
Standard Model J. Geom. Phys. 12 223–301
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[KS06] Knecht M and Schücker T 2006 Spectral action and the big desert Preprint hep-ph/0605166

[MO94] Morita K and Okumura Y 1994 Weinberg–Salam theory in non-commutative geometry Prog. Theor.
Phys. 91 959

[MO96] Morita K and Okumura Y 1996 Non-commutative differntial geometry and the standard model Prog.
Theor. Phys. 95 227

[Nac90] Nachtmann O 1990 Elementary Particle Physics: Concepts and Phenomena (Berlin: Springer)
[Ros03] Rosner J L 2003 Resource letter SM-1: the standard model and beyond Am. J. Phys. 71 302–18

(Preprint hep-ph/020617)
[Sakh75] Sakharov A D 1975 Spectral density of eigenvalues of the wave equation and vacuum polarization

Teor. Mat. Fiz. 23 178
[Sakh82] Sakharov A D 1982 Collected Works (New York: Dekker)
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